Methods to Quantify Environmental Flows

So Far...

- Environmental flows aren't simple . . . but we can figure things out
- Water works hard
- Many key issues with river management
 - Crustaceans and invertebrates are important
 - Riparian management is as important as flow
 - Connectivity is key
 - Emphasis so far has been on survival of orgs.

What can models tell us?

Short term survival of organisms
Long-term persistence of habitat
Long-term persistence of organisms

Models can tell us about:

- Hydrology (short and long-term water availability)
- Biology (short-term physical habitat availability)
- Geomorphology (long-term physical habitat maintenance or restoration)
- Connectivity (short and long-term)
- Water quality (short and long-term)

Manage organisms or ecosystems?

You can't manage aquatic organisms if you don't manage the river.

Traditional Approach

One species One method / tool One flow (minimum)

1970's – Hydrologic statistics 1980's – Quantitative biology models 1990's – Ecosystem processes 2000's – Holistic methods

volution

Methods

Flow quantification methods

- Standard-setting methods
 - Estimate single level or threshold of flow
- Incremental methods
 - Evaluate habitat value vs. flow relationship
 - Relate to a single riverine element at a time
- Multiple component methods
 - The next generation

Habitat Modeling Caveats

- There isn't a straight-line relationship between flow and habitat.
- A flow that's good for one species may be detrimental to others.
- A flow that maximizes habitat in one stream segment may not provide much in another.
- There isn't a single "best" flow think flow regimes.

All models are wrong, but some are useful.

George Box

Selecting Methods

- Each situation is different so each has a unique solution
- Document what questions need answered
- Document what questions DON'T need answered.

Hydrology Methods

- Indicators of Hydraulic Alteration (IHA)
- Range of Variability Approach (RVA)
- Flow duration curves (Q₉₈)

Hydrology Model Considerations

- Good for describing hydrology (planning)
- Need long-term gage data
- Low to moderate effort
- Long history of use acceptance
- Assumes a relationship with biology
- May have different relationships on different streams
- Need other tools to assess needs for other riverine elements

Biology

- Single Transect Methods
- Tennant Method (and variations)
- Physical Habitat Simulation HABSIM
- MesoHABitat SIMulator (MesoHABSIM)
- Two Dimensional Models (River 2-D)

Single Transect Methods

Single Transect Methods (Wetted Perimeter)

Single Transect Methods

- Low to moderate effort
- Long history of use
- Only useful for setting threshold flows
- Limited ability to identify trade-offs
- Doesn't address flow variability needs
- Need other tools to assess needs for other riverine elements

Tennant Method

Narrative Description of Flow	April to September	October to March
Flushing or maximum	200% from 48	
flow	to 72 hours	
Optimum range of flow	60-100%	60-100%
Outstanding habitat	60%	40%
Excellent habitat	50%	30%
Good habitat	40%	20%
Fair or degrading habitat	30%	10%
Poor or minimum habitat	10%	10%
Severe degradation	<10%	<10%

Tennant Method

- Can set threshold flows or regimes
- Need long-term gage data
- Limited ability to identify trade-offs
- Majority of challenges have been successfully defended
- Need other tools to assess needs for other riverine elements

Physical Habitat Simulation (PHABSIM)

PHABSIM Concerns

- 1-D hydraulic models straighten and simplify the channel
- Physical habitat suitability isn't the same as habitat
- Unknown relationship between WUA and fish biomass
- Need other models to quantify needs for other riverine purposes

MesoHABSIM

Presence (80%)		Beta
	BOULDER	1.71
-	RIPRAP	1.40
	SHADING	-1.48
1	DEPTH 50-75 cm	-1.23
High a	bundance (69%)	
	BOULDER	1.68
	SHADING	-1.01

2-Dimensional Physical Habitat Models

Courtesy Rick Anderson, CDOW

High-tech field equipment RTK-GPS & ADP/sonar

GPS & ADP/Sonar Survey

2D Modeling simulates river hydraulics for a flow range

Habitat Mapping

 Delineate meso habitat and determine surface area
 Determine hydraulic variables (depth and velocity)
 Rate the habitats suitability, based on species abundance

Habitat Suitability

Courtesy Rick Anderson, CDOW

Biology Model Considerations

- Many different models available
- Focus on survival or habitat suitability (short-term)
- Flow / habitat relationship may differ in different streams or stream segments
- Some address trade-offs
- Need other tools to assess needs for other riverine elements

Geomorphology

- Channel maintenance in gravel-bed streams
- Flushing flow
 - empirical
 - office-based
- Geomorphic classifications (Rosgen)
- HEC-6 and HEC-RAS

Geomorphology Model Considerations

- Usually have broad confidence intervals
- Address long-term physical habitat (not tied to one species)
- Need to specify timing, duration, ramping
- Need other tools to assess needs for other riverine elements

Water Quality

- QUAL2E
- Stream System Temperature (SSTEMP)
- Stream Network Temperature (SNTEMP)
- 7Q10

Water Quality

- Addressed long before water quantity
- Focus is on minimum flows (short or long-term needs)
- Don't address intra- or inter-annually variable flows
- Don't identify trade-offs
- Need other tools to assess needs for other riverine elements

Connectivity

- Two dimensional models can address this at the segment level
- Some groundwater models address this
- Estuary methods
 - Salinity based inflow method
 - Tidal distributary method
- Visual inspection

Connectivity

- Specify which of 4 dimensions you're using (lateral, vertical, longitudinal, time)
- Identify which elements are of interest (organisms, chemistry, bedload, energy)
- Specify time and duration when needed
- Need other tools to assess needs for other riverine elements

Holistic Methodologies

- Downstream Response to Imposed Flow Transformation (DRIFT)
- Ecological Limits of Hydrologic Alteration (ELOHA)
- Bayesian Decision Models
- Decision Flow Assessment (DFA)

Downstream Response to Imposed Flow Transformation (DRIFT)

Four modules

- Biophysical
- Socio-economic (common users)
- Scenario building
- Economics (strict monetary assessment)

Ecological Limits of Hydrologic Alteration (ELOHA)

- Links hydrological alteration (IHA) with ecology
 - Requires reasonably good hydrological protocol
 - Also requires information about ecological processes

Bayesian Decision Models

Decision Flow Assessment

Holistic Model Considerations

- Still address limited range of elements
- Biological outcome is the weakest link
- Method development and refinement is a high priority

Reservoir Fishery Assessment Methods

- Reservoir Quality Index
- Demonstration Drawdown

Reservoir Model Considerations

- Few fishery models to chose from
- Most focus on fish production
- Emphasize balance between riverine and reservoir uses
- Need other tools to assess needs for riverine elements

Monitoring

- Typically focus on post-project monitoring
- Adequate pre-project monitoring is essential
- Can be a long-term commitment
- Monitoring is not mitigation (unless tied to a regulatory action)

Nonitor What?

Organism abundance?
Community structure?
Habitat form and function?
Processes vs. snapshots?

More gage data are always needed

3/25/2003

Adaptive management is a process

Establish Objectives Implement Management **Monitor Effectiveness Evaluate Results Revise Management**

© Instream Flow Council

Adaptive management requires:

- Long-term commitment of all parties to a common (defined) goal,
- A clear definition of what success looks like (dynamic vs. static; habitat vs. population)
- Extensive monitoring before and after implementation of a flow prescription
- Ability and resources (formal commitment, water & money) to implement new strategies when information shows the need.

There is no single answer

Long-term persistence of organisms comes from long-term persistence of habitat and habitat processes

© Instream Flow Council

Integrated Ecosystem IFN Flow (cms) Week

Science can ascertain what is, but not what should be, and outside of its domain value judgments of all kinds remain. - Albert Einstein

