From Habitat Mapping to Ecological Function: Incorporating habitat into coral reef fisheries management

> Richard S. Appeldoorn Francisco E. Pagan Idelfonso Ruíz

Department of Marine Sciences University of Puerto Rico Mayagüez, Puerto Rico

Resilience and Ecosystembased Fisheries Management

- Ecosystem-based management must focus on the health and productive capacity of the system
- The identification and protection of key habitats will be critical for protecting ecosystem integrity and function.

Ecosystem Function

Ecosystem Services

Ecosystem Function

Ecosystem Services

Settlement/Recruitment
Nursery Habitats
Connectivity

Nutrient/Biomass Flows
Feeding Migrations
Ontogenetic Migrations

Planktiovry

Herbivory
Production
Spawning sites

Ecosystem Function

Ecosystem Services

 Settlement/Recruitment Nursery Habitats Connectivity Nutrient/Biomass Flows Feeding Migrations Ontogenetic Migrations Planktiovry Herbivory Production Herbivory Spawning sites

 Commercial Fisheries Recreational Fisheries Snorkeling/Diving Beach Sand Production Shoreline Protection Education Scientific Research Bio-active Compounds Passive Values Hereditary Value Future Use Existential Value Biodiversity

Habitat

(a surrogate for species distribution)

- Each species has habitat preferences
- Habitat preferences can shift with ontogeny
- Key habitats are shared by many species
- Key habitats are embedded in the seascape
- Spatial separation of habitats for management purposes is extremely difficult
- A more practical alternative is to target protection for prioity areas that are critical to the productive capacity of the system over large scales

From habitat protection

To

Criteria for Identifying Priority Areas

Representation

All species groups included (Habitats)

Replication

Have protection and spread out risk (Stratification, Clustering)

Self-sustainability

Retain ecological function through networks

Self-Sustaining Network → Close proximity

 Size of Planning Unit (small scale)
 Representation + Clustering (medium scale)
 Replication + Stratification, Maximum Spacing (large scale)

Incorporating Self-sustainability can be Enhanced

Enhance Representation

Input into Model

Define known limits of Connectivity

Input to Model
Assess output from Model

Enhanced Representation

 Not all habitat patches are equal Habitat location is important - Use depth, geomorphology, shelf position to subdivide habitat Emphasize differential habitat use - Within species (e.g., ontogenetic habitat use) – Across species **Process still relies on proximity** There are limits to connectivity

Limits to Connectivity

Distance Expected larval dispersal Daily feeding migrations Ontogenetic migrations

– E.g., Coastline to Shelfedge

Application to Puerto Rico Coral Reef Ecosystems

- Data Sources
 - NOAA Habitat Maps (Area)
 minimum mapping unit = one acre (~ 4000 m²)
 - NOAA Environmental Sensitivity Maps (e.g, Wetlands, Linear Coastlines)

Habitats

13 Reef + Colonized Hardbottom

- 4 Uncolonized Hardbottom
- 2 Unconsolidated Substrate
- 3 Sea Grass
- 3 Mangrove

Sea Grass

 Backreef and reef crest medium density with clean coralline sand – serve specific settlement/nursery functions Lagoon and shoreline intertidal dense, with a silty bottom – foraging area Deep sea grass – outer shelf with associated species

Mangroves

- Coastal
 - Water quality, Lagoonal fish fauna, nursery
- Coastal edge
 - Important nursery area for reef fishes
 - Prop root communities
- Cays
 - Important nursery area for reef fishes

Reef Habitats Reef Type & Geomorphic Zone Colonized pavement & bedrock Linear reef, spur-and-groove, large patch reef Small patch reefs & scattered coral Lagoon, Reef crest and Shoreline intertidal Backreef Forereef Bankshelf (outer shelf) Bankshelf escarpment

Other Habitats

- Rocky intertidal
- Beaches
- Mesophotic reefs (depth & slope)
- Sand
- Mud

Limits to Habitat Connectivity Feeding migrations (100's m) - Small scale (within single planning unit) Medium scale (clustering to force proximity) Ontogenetic migrations Include all habitats within any single reserve Extend from shoreline to shelfedge – Partition habitats by role and position

Limits to Larval Dispersal

Short Dispersers

 Cluster to have retention

Long Dispersers

 Set maximum distance between reserves
 Biophysical Models, Larval Distributions
 40 km

Acknowledgements

- Tony Chatwin
- The Nature Conservancy
- NOAA/CSCOR