

Caribbean Coral Reef Institute

CCRI as an Approach to Research

- Cooperative program with NOAA
- Develop, implement, and administer <u>management-driven</u> research and monitoring activities
- Interact with government agencies, public and private organizations
- Utilize fully the resource base of the region to collaborate and conduct research

Why CCRI? → Coral reef management means local action!

Puerto Rico platform (50 m) and maritime zone (9 Nm)

Capacities, Governance systems, Laws and regulations, Stakeholders, Social structures, Historical context, Physical geography

Fisheries Assessment

Marine Ornamentals

16 Fishes20 Invertebrates

Spawning Aggregations

Acoustic detection & monitoring

Assessment of spawning stock

TEK and Aggregation Sites and Times From $7 \rightarrow 134$ "Potential" Aggregations 27 now gone 93 current w/ 76 sites being multispecies sites 61 species: snappers (12), groupers (11)

MPA's

Critical Habitats & Zoning

Management Plans

Plan de Manejo de la Reserva Natural Canal Luís Peña, Culebra

Documento base para el plan de manejo Primer Borrador

Culebra, Puerto Rico Octubre 28 de 2005

GPS Products

Outreach: Bilingual MPA Blog

Development & Implementation StepsCapacity buildingHistoryResource usePolicyIntegratedEcologicalAssessmentsLanguage and conceptsEducation

Áreas Marinas Protegidas en Puerto Rico y el Gran Caribe

Caribbean Marine Reserves Research and Monitoring Workshop / Taller Caribeño sobre Investigación y Monitoreo en las Reservas Marinas July 18th, 2005

Published by / Publicado por: Manuel Valdés Pizzini From / Desde: St. John, USVI

Gary Davis, Visiting Chief Scientist, NPS served as facilitator of the workshop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 « Jul

Processes Affecting Reef

Resilience

Cyanobacterial and algal epizoic growth on corals

Response of diseased corals to rising temperature and nutrient pollution

Threatened Species: *Acropora*

Spatial scale of genetic diversity

 $Colony \rightarrow Reef \rightarrow Coast \rightarrow Island \rightarrow Region$

Early life history Rearing Temperature effects Settlement Preferences Survival

Non-fisheries Assessments

Disease

Bleaching

Reef Condition

Detailed Habitat Maps

dense_algae sparse_algae grass_coral dense_grass grass_invertebrates grass_sparse sand_invertebrates sand_noripple sand_ripple fine_sand corals_low relief mud_bare mud_invertebrates mud_reef gorgonian_patch coral_patch patch_halo elevated_gorgonians gorgonian_plain deep_algae shallow_algae

Non-point Source Pollution

GIS Modeling of Sedimentary Runoff

Erosion = f (Slope, Grain size, Cover, Rainfall, Time since disturbance)

Dispersal of Terrestrial Runoff Over the Shelf

Long-term land use dynamics and erosion processes

Fish Spawning Aggregations Mapping Suspected Locations Discovering New Aggregations Mapping Extent Determining Seasonality

Marxan Analyses

Species Distributions

Hawksbill Turtle (Distr & Nests) Leatherback Turtle (Distr & Nests) Green Turtle (Distr & Nests) Dolphins Pelicans (Roosts & Nests) Manatees (Adults & Calves) Humpback Whales (Adults & Calves) Queen Conch (Adults & Juveniles)

Incorporating Ecological Function into MPA Network Design in Coral Reef Ecosystems

Habitats as surrogates for biological communities Definition and arrangement of habitats Limits to habitat connectivity Criteria for output assessment Modeling cost of implementation

Best selection from Marxan

Cost to Functionality

Marxan Run	Total Planning Units	Planning Units Included	% Area	% Above Null
Low Cluster				
Null Habitat	1353	230	17.00	
Functional Habitat	1353	299	22.10	30.0
High Cluster				
Null Habitat	1353	346	25.57	
Functional Habitat	1353	455	33.63	31.5

Mesophotic Coral Ecosystems

Large-scale Geomorphology Affects MCE Distribution

SW Sides - Greater MCE Development

